THE ROLE OF NEED FOR STRUCTURE IN TECHNICAL ANALYSIS AND HOW IDENTIFYING INFORMATION IN PRICE MOVEMENTS RAISES TRADERS’ CONFIDENCE

Łukasz Markiewicz, Marcin Czupryna, Elżbieta Kubińska

Abstrakt


Technical analysis (TA) is a tool believed to support investor’s investment decisions. Even if research has demonstrated that TA cannot be used to make systematic profits over a long time period, it could potentially bring psychological payoffs to its users in the form of enhancing their confidence. In an experimental study we show that: (1) chartists demonstrate overconfidence in TA usage, believing that they are better than they actually are in TA formation recognition, and that; (2) the act of naming an observed trend as a TA formation brings extra confidence to the chartist, regardless of whether this is a real TA sequence or a random sequence. Thus, both naming an existing TA formation as a TA formation and naming a random sequence as a TA formation result in greater confidence.

Also, irrespective of the high popularity of TA among investors, there are marked individual differences in TA followers. In a questionnaire study, we demonstrate that declared positive attitudes toward TA correlate positively with high need for (cognitive) closure (as measured by the Need for Cognitive Closure Scale; NFCS), specifically, desire for predictability.

Słowa kluczowe


technical analysis; chartists; overconfidence; confidence; dubious data; cognitive closure

Pełny tekst / Download full text:

PDF

Bibliografia


Aronson, D. (2011). Evidence-based technical analysis: applying the scientific method and statistical inference to trading signals (Vol. 274): John Wiley & Sons.

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(i01), 1–48. doi:10.18637/jss.v067.i01

Burns, B. D., & Corpus, B. (2004). Randomness and Inductions From Streaks: “Gambler’s Fallacy” Versus “Hot Hand”. Psychonomic Bulletin and Review, 11(1), 179–184.

Campbell, J.Y., Lo, A.W.-C., & MacKinlay, A. C. (1997). The econometrics of financial markets (Vol. 2): Princeton University Press, Princeton, NJ.

Charlebois, M., & Sapp, S. (2007). Temporal Patterns in Foreign Exchange Returns and Options. Journal of Money, Credit and Banking, 39(2–3), 443–470. doi:10.1111/j.0022-2879.2007.00032.x

Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 383–417.

Fama, E., & Blume, M. (1966). Filter Rules and Stock-Market Trading. The Journal of Business, 39(1), 226–241. Retrieved from http://www.jstor.org/stable/2351744

Hsu, P.-H., Hsu, Y.-C., & Kuan, C.-M. (2010). Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias. Journal of Empirical Finance, 17(3), 471–484.

doi:http://dx.doi.org/10.1016/j.jempfin.2010.01.001

Iacus, S.M. (2009). Simulation and inference for stochastic differential equations: with R examples: Springer Science & Business Media.

Kossowska, M., Hanusz, K., & Trejtowicz, M. (2012). Skrócona wersja Skali Potrzeby Poznawczego Domknięcia. Dobór pozycji i walidacja skali. Psychologia Społeczna, 71(20), 89–99.

Kounios, J., & Beeman, M. (2009). The Aha! Moment:The Cognitive Neuroscience of Insight. Current Directions in Psychological Science, 18(4), 210–216. doi:10.1111/j.1467-8721.2009.01638.x

Kourtidis, D., Šević, Ž., & Chatzoglou, P. (2011). Investors’ trading activity: A behavioural perspective and empirical results. The Journal of Socio-Economics, 40(5), 548–557. doi:http://dx.doi. org/10.1016/j.socec.2011.04.008

Kruglanski, A.W. (1989). Lay epistemics and human knowledge: Cognitive and motivational bases: Springer.

Kubińska, E., Czupryna, M., Markiewicz, Ł., & Czekaj, J. (2018). Technical analysis gives you courage, but not money – on the relationship between technical analysis usage, overconfidence and investment performance. Argumenta Oeconomica, 1(40).

Kubińska, E., & Markiewicz, Ł. (2013). Wpływ nadmiernej pewności siebie na ryzyko portfela inwestycyjnego. In A. S. Barczak & P. Tworek (Eds.), Zastosowanie metod ilościowych w zarządzaniu ryzykiem w działalności inwestycyjnej (pp. 375–385). Katowice: Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach.

Larrick, R., Burson, K., & Soll, J. (2007). Social comparison and confidence: When thinking you’re better than average predicts overconfidence (and when it does not). Organizational Behavior and Human Decision Processes, 102(1), 76–94.

Lo, A.W., & Hasanhodzic, J. (2009). The Heretics of Finance: Conversations with Leading Practitioners of Technical Analysis. New York: Bloomberg Press.

Lo, A.W., & Hasanhodzic, J. (2010). The evolution of technical analysis: financial prediction from Babylonian tablets to Bloomberg terminals. New York: Bloomberg Press.

Lo, A.W., Mamaysky, H., & Wang, J. (2000). Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation. The Journal of Finance, 55(4), 1705–1765. doi:10.1111/0022-1082.00265

Lopes, L.L., & Oden, G. C. (1987). Distinguishing between random and nonrandom events. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(3), 392–400. doi:10.1037/02787393.13.3.392

Markiewicz, Ł., & Markiewicz-Żuchowska, A. (2012). Skłonności poznawcze sędziego wpływające na wysokość wymierzonej kary. Decyzje, 18, 49–81.

Markiewicz, Ł., & Weber, E. U. (2013). DOSPERT’s Gambling Risk-Taking Propensity Scale Predicts Excessive Stock Trading. Journal of Behavioral Finance, 14(1), 65–78. doi:10.1080/154275

2013.762000

Mateus, A., & Caeiro, F. (2014). An R implementation of several randomness tests. Paper presented at the International conference of computational methods in sciences and engineering 2014 (iccmse 2014).

Moore, D.A. (2007). Not so above average after all: When people believe they are worse than average and its implications for theories of bias in social comparison. Organizational Behavior and Human Decision Processes, 102(1), 42–58. Retrieved from http://www.sciencedirect.com/science/article/B6WP2-4M93P6S-3/2/af3bb54d1d3d6eb467fe8197957ccd69

Moore, D.A., & Healy, P.J. (2008). The trouble with overconfidence. Psychological review, 115(2), 502–517.

Murphy, J.J. (1999). Technical analysis of the financial markets: A comprehensive guide to trading methods and applications: Penguin.

R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/.

Rustichini, A., DeYoung, C.G., Anderson, J.E., & Burks, S.V. (2016). Toward the integration of personality theory and decision theory in explaining economic behavior: An experimental investigation. Journal of Behavioral and Experimental Economics, 64, 122–137. doi:http://dx.doi. org/10.1016/j.socec.2016.04.019

Schmitz, C. (2015). LimeSurvey: An Open Source survey tool. Hamburg, Germany: LimeSurvey Project Team. Retrieved from http://www.limesurvey.org

Sternberg, R.J., & Davidson, J.E. (1995). The nature of insight. Cambridge, MA, US: The MIT Press.

Sturm, R.R. (2014). A Turning Point Method For Measuring Investor Sentiment. Journal of Behavioral Finance, 15(1), 30–42. doi:10.1080/15427560.2014.877464

Tyszka, T., Markiewicz, Ł., Kubińska, E., Gawryluk, K., & Zielonka, P. (2017). A belief in trend reversal requires access to cognitive resources. Journal of Cognitive Psychology, 29(2), 202–216. doi:10.1080/20445911.2016.1245195

Tyszka, T., Zielonka, P., Dacey, R., & Sawicki, P. (2008). Perception of randomness and predicting uncertain events. Thinking & Reasoning, 14(1), 83–110. doi:10.1080/13546780701677669

Weber, E.U. (2004). Perception matters: Psychophysics for economists. The psychology of economic decisions, 2, 163–176.

Weber, E.U., Siebenmorgen, N., & Weber, M. (2005). Communicating Asset Risk: How Name Recognition and the Format of Historic Volatility Information Affect Risk Perception and Investment

Decisions. Risk Analysis, 25(3), 597–609. doi:10.1111/j.1539-6924.2005.00627.x

Webster, D. M., & Kruglanski, A. W. (1994). Individual differences in need for cognitive closure. Journal of Personality and Social Psychology, 67(6), 1049–1062. doi:10.1037/0022-3514.67.6.1049

Williams, J.J., & Griffiths, T.L. (2013). Why are people bad at detecting randomness? A statistical argument. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(5), 1473– 1490. doi:10.1037/a0032397

Wojciszke, B. (2009). Dane i pseudodane w procesie postrzegania ludzi. In M. Kofta & T. Szustrowa

(Eds.), Złudzenia, które pozwalają żyć: szkice ze społecznej psychologii osobowości: praca zbiorowa: Wydawnictwo Naukowe PWN.

Zaleśkiewicz, T., Gąsiorowska, A., Stasiuk, K., Maksymiuk, R., & Bar-Tal, Y. (2016). Efekt aktywnej rekomendacji czy efekt konfirmacyjny? Mechanizm zniekształceń poznawczych w ocenie autorytetu epistemicznego na przykładzie ekspertów z dziedziny finansów. Psychologia Ekonomiczna (8), 59–74.

Zielonka, P. (2002). How financial analysts perceive macroeconomic, political news and technical analysis signals. Financial Counseling and Planning, 13(1), 87–97.

Zielonka, P. (2004). Technical analysis as the representation of typical cognitive biases. International Review of Financial Analysis, 13(2), 217–225. Retrieved from http://www.sciencedirect.com/ science/article/B6W4W-4BYF8YP-1/2/22eadef1501f5a0c1eb575f303539691

Zielonka, P., Białaszek, W. (2020). Technical analysis momentum and contrarian signals as a representation of common cognitive biases. Journal of Management and Business Administration.

Central Europe, 3(2), 217–225




DOI: http://dx.doi.org/10.7206//DEC.1733-0092.141

Refbacks

  • There are currently no refbacks.


This journal provides immediate open access to its content under the Creative Commons BY 4.0 license: https://creativecommons.org/licenses/by/4.0/. Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license.