ZDOLNOŚCI NUMERYCZNE JAKO KLUCZOWE ZDOLNOŚCI POZNAWCZE W PROCESIE PODEJMOWANIA DECYZJI

Agata Sobków, Jakub Figol, Jakub Traczyk

Abstrakt


Celem artykułu jest dokonanie przeglądu modeli teoretycznych oraz badań empirycznych nad rolą zdolności numerycznych (tj. zdolności umysłowych w przetwarzaniu informacji numerycznych) w podejmowaniu decyzji w warunkach ryzyka i niepewności. Badania prowadzone w ostatniej dekadzie wskazują, że zdolności numeryczne są jednym z najważniejszych predyktorów podejmowania dobrych decyzji, którego przewidywania są niezależne od innych konstruktów psychologicznych oraz zdolności umysłowych (takich jak inteligencja płynna czy refleksyjność poznawcza). Kluczowa rola zdolności numerycznych jest opisywana w co najmniej trzech modelach teoretycznych: teorii śladu rozmytego, teorii umiejętnego podejmowania decyzji oraz koncepcji wielorakich zdolności numerycznych. Wyniki licznych badań empirycznych wskazują na to, że u podłoża podejmowania lepszych decyzji przez osoby z wysokim poziomem zdolności numerycznych leżą mechanizmy psychologiczne natury poznawczej, motywacyjnej i afektywnej. Odkrycia dotyczące funkcjonowania osób z wysokim i niskim poziomem zdolności numerycznych posłużyły do opracowania zarówno doraźnych (np. pomoce wizualne lub komunikowanie ryzyka w formacie doświadczeniowym), jak i długofalowych (np. treningi poznawcze) metod wspierania procesu podejmowania decyzji. Dzięki tym pomocom decyzyjnym opracowano skuteczne sposoby wspierania osób z niskim poziomem zdolności numerycznych w trafnej ocenie i rozumieniu ryzyka oraz podejmowaniu dobrych decyzji.

Słowa kluczowe


zdolności numeryczne, podejmowanie decyzji, pomoce wizualne, treningi poznawcze, zdolności poznawcze, ocena ryzyka, komunikowanie ryzyka.

Pełny tekst / Download full text:

PDF

Bibliografia


Allais, M. (1953). L’ Extension des Theories de l’Equilibre Economique General et du Rendement Social au Cas du Risque. Econometrica, 21(2), 269–290. Retrieved from https://www.jstor.org/ stable/1905539

Allan, J.N. (2018). Numeracy vs. Intelligence: A model of the relationship between cognitive abilities and decision making. University of Oklahoma. Retrieved from https://shareok.org/handle/11244/299906

Armstrong, B., & Spaniol, J. (2017). Experienced Probabilities Increase Understanding of Diagnostic Test Results in Younger and Older Adults. Medical Decision Making, 37(6), 670–679. https:// doi.org/10.1177/0272989X17691954

Ashby, N.J.S. (2017). Numeracy predicts preference consistency: Deliberative search heuristics increase choice consistency for choices from description and experience. Judgment and Decision Making, 12(2), 128–139.

Au, J., Sheehan, E., Tsai, N., Duncan, G.J., Buschkuehl, M., & Jaeggi, S.M. (2015). Improving fluid intelligence with training on working memory: a meta-analysis. Psychonomic Bulletin and Review, 22(2), 366–377. https://doi.org/10.3758/s13423-014-0699-x

Baron, J. (2008). Thinking and deciding (4th ed.). Cambridge, UK: Cambridge University Press.

Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The priority heuristic: making choices without trade-offs. Psychological Review, 113(2), 409–432. https://doi.org/10.1037/0033-295X.113.2.409

Broniatowski, D.A., & Reyna, V. F. (2018). A formal model of fuzzy-trace theory: Variations on framing effects and the Allais Paradox. Decision, 5(4), 205–252. https://doi.org/10.1037/dec0000083

Busemeyer, J., & Townsend, J. (1993). Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100(3), 432–459.

Campbell, J.I.D. (Ed.). (2005). Handbook of Mathematical Cognition. New York, NY: Taylor & Francis Group.

Carroll, J.B. (1993). Human cognitive abilities. Cambridge: Cambridge University Press.

Catena, A., Maldonado, A., & Cándido, A. (1998). The effect of frequency of judgement and the type of trials on covariation learning. Journal of Experimental Psychology: Human Perception and Performance, 24(2), 481–495. https://doi.org/10.1037/0096-1523.24.2.481

Cokely, E.T., Feltz, A., Ghazal, S., Allan, J.N., Petrova, D.G., & Garcia-Retamero, R. (2018). Decision Making Skill: From Intelligence to Numeracy and Expertise. In K.A. Ericsson, R.R. Hoffman, A. Kozbelt, & A.M. Williams (Eds.), Cambridge Handbook of Expertise and Expert Performance (2nd ed., pp. 476–505). New York, NY: Cambridge University Press.

Cokely, E.T., Galesic, M., Schult, E., & Garcia-Retamero, R. (2012). Measuring Risk Literacy: The Berlin Numeracy Test. Judgment and Decision Making, 7(1), 25–47.

Cokely, E.T., & Kelley, C.M. (2009). Cognitive abilities and superior decision making under risk : A protocol analysis and process model evaluation. Judgment and Decision Making, 4(1), 20–33.

Dehaene, S. (1997). The number sense: how the mind creates mathematics. Oxford, England: Oxford University Press.

Dehaene, S. (2003). The neural basis of the Weber-Fechner law: a logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147. https://doi.org/10.1016/S1364-6613(03)00055-X

Dolan, J.G., Cherkasky, O.A., Li, Q., Chin, N., & Veazie, P.J. (2016). Should Health Numeracy Be Assessed Objectively or Subjectively? Medical Decision Making, 36(7), 868–875. https://doi.org/10.1177/0272989X15584332

Estrada-Mejia, C., de Vries, M., & Zeelenberg, M. (2016). Numeracy and wealth. Journal of Economic Psychology, 54(1), 53–63. https://doi.org/10.1016/j.joep.2016.02.011

Estrada-Mejia, C., Peters, E., Dieckmann, N.F., Zeelenberg, M., De Vries, M., & Baker, D. P. (2020). Schooling, numeracy, and wealth accumulation: A study involving an agrarian population. Journal of Consumer Affairs. https://doi.org/10.1111/joca.12294

Fagerlin, A., Zikmund-Fisher, B.J., Ubel, P.A., Jankovic, A., Derry, H.A., & Smith, D.M. (2007). Measuring numeracy without a math test: Development of the subjective numeracy scale. Medical Decision Making, 27(5), 672–680. https://doi.org/10.1177/0272989X07304449

Galesic, M., & Garcia-Retamero, R. (2011). Graph Literacy A Cross-Cultural Comparison. Medical

Decision Making, 31(3), 444–457. https://doi.org/10.1177/0272989X10373805

Garcia-Retamero, R., Andrade, A., Sharit, J., & Ruiz, J.G. (2015). Is patients’ numeracy related to physical and mental health? Medical Decision Making, 35(4), 501–511. https://doi.org/10.1177/0272989X15578126

Garcia-Retamero, R., & Cokely, E.T. (2013). Communicating Health Risks With Visual Aids. Current Directions in Psychological Science, 22(5), 392–399. https://doi.org/10.1177/0963721413491570

Garcia-Retamero, R., & Cokely, E.T. (2017). Designing Visual Aids That Promote Risk Literacy: A Systematic Review of Health Research and Evidence-Based Design Heuristics. Human Factors: The Journal of the Human Factors and Ergonomics Society, 59(4), 582–627. https://doi. org/10.1177/0018720817690634

Garcia-Retamero, R., Cokely, E.T., & Hoffrage, U. (2015). Visual aids improve diagnostic inferences and metacognitive judgment calibration. Frontiers in Psychology, 6(932), 1–12. https://doi. org/10.3389/fpsyg.2015.00932

Garcia-Retamero, R., & Galesic, M. (2010). Who proficts from visual aids: Overcoming challenges in people’s understanding of risks. Social Science and Medicine, 70(7), 1019–1025. https://doi. org/10.1016/j.socscimed.2009.11.031

Garcia-Retamero, R., Sobkow, A., Petrova, D. G., Garrido, D., & Traczyk, J. (2019). Numeracy and Risk Literacy: What Have We Learned so Far? Spanish Journal of Psychology, e10, 1–11. https:// doi.org/10.1017/sjp.2019.16

Ghazal, S., Cokely, E.T., & Garcia-Retamero, R. (2014). Predicting biases in very highly educated samples: Numeracy and metacognition. Judgment and Decision Making, 9(1), 15–34.

Hasher, L., & Zacks, R.T. (1984). Automatic processing of fundamental information: The case of frequency of occurrence. American Psychologist, 39(12), 1372–1388. https://doi.org/10.1037/0003-066X.39.12.1372

Hogarth, R.M. (2015). What’s a “Good” Decision? Issues in Assessing Procedural and Ecological Quality. In G. Keren & G. Wu (Eds.), The Wiley Blackwell Handbook of Judgement and Decision Making (pp. 952–972). John Wiley & Sons, Ltd.

Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106(3), 1221–1247. https://doi.org/10.1016/j.cognition.2007.06.004

Jaeggi, S.M., Buschkuehl, M., Jonides, J., & Perrig, W.J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6829–6833. https://doi.org/10.1073/pnas.0801268105

Jaeggi, S.M., Studer-Luethi, B., Buschkuehl, M., Su, Y.F., Jonides, J., & Perrig, W.J. (2010). The relationship between n-back performance and matrix reasoning - implications for training and transfer. Intelligence, 38(6), 625–635. https://doi.org/10.1016/j.intell.2010.09.001

Jasper, J.D., Bhattacharya, C., & Corser, R. (2017). Numeracy Predicts More Effortful and Elaborative Search Strategies in a Complex Risky Choice Context: A Process-Tracing Approach. Journal of Behavioral Decision Making, 30(2), 224–235. https://doi.org/10.1002/bdm.1934

Jasper, J.D., Bhattacharya, C., Levin, I.P., Jones, L., & Bossard, E. (2013). Numeracy as a Predictor of Adaptive Risky Decision Making. Journal of Behavioral Decision Making, 26(2), 164–173. https://doi.org/10.1002/bdm.1748

Kable, J.W., Caulfield, M.K., Falcone, M., McConnell, M., Bernardo, L., Parthasarathi, T., … Lerman, C. (2017). No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance. The Journal of Neuroscience, 37(31), 7390–7402. https://doi. org/10.1523/JNEUROSCI.2832-16.2017

Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263–292.

Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., … von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57(3), 782–795. https://doi.org/10.1016/j.neuroimage.2011.01.070

Låg, T., Bauger, L., Lindberg, M., & Friborg, O. (2014). The Role of Numeracy and Intelligence in Health-Risk Estimation and Medical Data Interpretation. Journal of Behavioral Decision Making, 27(2), 95–108. https://doi.org/10.1002/bdm.1788

Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164. https://doi.org/10.1017/S0140525X16000960

Liberali, J.M., Reyna, V.F., Furlan, S., Stein, L.M., & Pardo, S. T. (2012). Individual Differences in Numeracy and Cognitive Reflection, with Implications for Biases and Fallacies in Probability Judgment. Journal of Behavioral Decision Making, 25(4), 361–381. https://doi.org/10.1002/ bdm.752

Lipkus, I.M., Samsa, G., & Rimer, B.K. (2001). General performance on a numeracy scale among highly educated samples. Medical Decision Making, 21(1), 37–44. https://doi.org/10.1177/0272989X0102100105

Loomes, G., & Sugden, R. (1982). Regret Theory: An Alternative Theory of Rational Choice Under Uncertainty. The Economic Journal, 92(368), 805–824. https://doi.org/10.2307/2232669

Lopes, L.L. (1987). Between hope and fear: The psychology of risk. Advances in Experimental Social Psychology, 20, 255–295. https://doi.org/10.1016/S0065-2601(08)60416-5

Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. https://doi.org/10.1037/a0028228

Miron-Shatz, T., Hanoch, Y., Doniger, G.M., Omer, Z.B., & Ozanne, E.M. (2014). Subjective but not objective numeracy influences willingness to pay for BRCA1 / 2 genetic testing. Judgment and

Decision Making, 9(2), 152–158.

Nęcka, E. (2018). Trening poznawczy [The cognitive training]. Warszawa: PWN.

Okan, Y., Galesic, M., & Garcia-Retamero, R. (2016). How People with Low and High Graph Literacy Process Health Graphs: Evidence from Eye-tracking. Journal of Behavioral Decision Making, 29(2–3), 271–294. https://doi.org/10.1002/bdm.1891

Okan, Y., Garcia-Retamero, R., Cokely, E.T., & Maldonado, A. (2012). Individual Differences in Graph Literacy: Overcoming Denominator Neglect in Risk Comprehension. Journal of Behavioral Decision Making, 25(4), 390–401. https://doi.org/10.1002/bdm.751

Okan, Y., Stone, E.R., & Bruin, B. de B. (2018). Designing Graphs that Promote Both Risk Understanding and Behavior Change. Risk Analysis, 38(5), 929–946. https://doi.org/10.1111/risa.12895

Park, I., & Cho, S. (2018). The influence of number line estimation precision and numeracy on risky financial decision making. International Journal of Psychology. https://doi.org/10.1002/ ijop.12475

Payne, J. W., Bettman, J.R.J.R., & Johnson, E.J.E. (1988). Adaptive strategy selection in decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(3), 534. Retrieved from http://psycnet.apa.org/journals/xlm/14/3/534/

Payne, J. W., Bettman, J.R., & Johnson, E.J. (1993). The Adaptive Decision Maker. Cambridge: Cambridge University Press.

Peters, E. (2017). Educating good decisions. Behavioural Public Policy, 1(02), 162–176. https://doi. org/10.1017/bpp.2016.15

Peters, E., & Bjälkebring, P. (2015). Multiple numeric competencies: When a number is not just a number. Journal of Personality and Social Psychology, 108(5), 802–822. https://doi.org/10.1037/ pspp0000019

Peters, E., Fennema, M.G., & Tiede, K.E. (2019). The loss-bet paradox: Actuaries, accountants, and other numerate people rate numerically inferior gambles as superior. Journal of Behavioral Decision Making, 32(1), 15–29. https://doi.org/10.1002/bdm.2085

Peters, E., & Levin, I.P. (2008). Dissecting the risky-choice framing effect: Numeracy as an individual-difference factor in weighting risky and riskless options. Judgment and Decision Making, 3(6), 435–448.

Peters, E., Shoots-Reinhard, B., Tompkins, M.K., Schley, D., Meilleur, L., Sinayev, A., … Crocker, J. (2017). Improving numeracy through values affirmation enhances decision and STEM outcomes. PLOS ONE, 12(7), e0180674. https://doi.org/10.1371/journal.pone.0180674

Peters, E., Tompkins, M.K., Knoll, M.A.Z., Ardoin, S.P., Shoots-Reinhard, B., & Meara, A. S. (2019). Despite high objective numeracy, lower numeric confidence relates to worse financial and medical outcomes. Proceedings of the National Academy of Sciences, 116(39), 19386–19391. https:// doi.org/10.1073/pnas.1903126116

Peters, E., Västfjäll, D., Slovic, P., Mertz, C.K., Mazzocco, K., & Dickert, S. (2006). Numeracy and decision making. Psychological Science, 17(5), 407–413. https://doi.org/10.1111/j.1467-9280.2006.01720.x

Petrova, D.G., Garcia-Retamero, R., Catena, A., Cokely, E., Heredia Carrasco, A., Arrebola Moreno, A., & Ramírez Hernández, J.A. (2017). Numeracy Predicts Risk of Pre-Hospital Decision Delay: a Retrospective Study of Acute Coronary Syndrome Survival. Annals of Behavioral Medicine, 51(2), 292–306. https://doi.org/10.1007/s12160-016-9853-1

Petrova, D.G., Garcia-Retamero, R., Catena, A., & van der Pligt, J. (2016). To screen or not to screen: What factors influence complex screening decisions? Journal of Experimental Psychology: Applied, 22(2), 247–260. https://doi.org/10.1037/xap0000086

Petrova, D.G., Kostopoulou, O., Delaney, B. C., Cokely, E.T., & Garcia-Retamero, R. (2018). Strengths and Gaps in Physicians’ Risk Communication: A Scenario Study of the Influence of Numeracy on Cancer Screening Communication. Medical Decision Making, 38(3), 355–365. https://doi. org/10.1177/0272989X17729359

Petrova, D.G., Traczyk, J., & Garcia-Retamero, R. (2019). What shapes the probability weighting function? Influence of affect, numeric competencies, and information formats. Journal of Behavioral Decision Making, 32(2), 124–139. https://doi.org/10.1002/bdm.2100

Petrova, D.G., van der Pligt, J., & Garcia-Retamero, R. (2014). Feeling the Numbers: On the Interplay Between Risk, Affect, and Numeracy. Journal of Behavioral Decision Making, 27(3), 191– 199. https://doi.org/10.1002/bdm.1803

Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior & Organization,

(4), 323–343. https://doi.org/10.1016/0167-2681(82)90008-7

Reber, A.S. (1993). Implicit Learning and Tacit Knowledge. New York: Oxford University Press.

Reyna, V.F., & Brainerd, C.J. (1995). Fuzzy-trace theory: An interim synthesis. Learning and Individual Differences, 7(1), 1–75. https://doi.org/10.1016/1041-6080(95)90031-4

Reyna, V.F., & Brainerd, C.J. (2008). Numeracy, ratio bias, and denominator neglect in judgments of risk and probability. Learning and Individual Differences, 18(1), 89–107. https://doi.org/10.1016/j. lindif.2007.03.011

Reyna, V.F., & Brainerd, C.J. (2011). Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model. Developmental Review, 31(2–3), 180–206. https://doi.org/10.1016/j. dr.2011.07.004

Reyna, V., & Brust-Renck, P. (2014). A review of theories of numeracy: Psychological mechanisms and implications for medical decision making. In B. Anderson & J. Schulkin (Eds.), Numerical Reasoning in Judgments and Decision Making about Health (pp. 215–251). Cambridge: Cambridge University Press. doi:10.1017/CBO9781139644358.011

Reyna, V.F., & Brust-Renck, P.G. (2020). How representations of number and numeracy predict decision paradoxes: A fuzzy-trace theory approach. Journal of Behavioral Decision Making, (February), 1–23. https://doi.org/10.1002/bdm.2179

Reyna, V.F., Estrada, S.M., DeMarinis, J.A., Myers, R.M., Stanisz, J.M., & Mills, B.A. (2011). Neurobiological and memory models of risky decision making in adolescents versus young adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(5), 1125–1142. https:// doi.org/10.1037/a0023943

Reyna, V.F., Nelson, W.L., Han, P.K., & Dieckmann, N.F. (2009). How numeracy influences risk comprehension and medical decision making. Psychological Bulletin, 135(6), 943–973. https:// doi.org/10.1037/a0017327

Reyna, V.F., Rahimi-Golkhandan, S., Garavito, D.M.N., & Helm, R.K. (2018). The fuzzy-trace process model. In W. De Neys (Ed.), Dual Process Theory 2.0 (pp. 82–99). New York, NY: Routledge.

Reynvoet, B., & Sasanguie, D. (2016). The Symbol Grounding Problem Revisited: A Thorough Evaluation of the ANS Mapping Account and the Proposal of an Alternative Account Based on Symbol–Symbol Associations. Frontiers in Psychology, 07. https://doi.org/10.3389/fpsyg.2016.01581

Ritchie, S.J., & Tucker-Drob, E. M. (2018). How Much Does Education Improve Intelligence? A Meta-Analysis. Psychological Science, 29(8), 1358–1369. https://doi.org/10.1177/0956797618774253

Rottenstreich, Y., & Hsee, C.K. (2001). Money, kisses, and electric shocks: on the affective psychology of risk. Psychological Science, 12(3), 185–190. https://doi.org/10.1111/1467-9280.00334

Schley, D.R., & Peters, E. (2014). Assessing “Economic Value”: Symbolic-Number Mappings Predict Risky and Riskless Valuations. Psychological Science, 25(3), 753–761. https://doi. org/10.1177/0956797613515485

Schwartz, L.M., Woloshin, S., Black, W.C., & Welch, H.G. (1997). The role of numeracy in understanding the benefit of screening mammography. Annals of Internal Medicine, 127(11), 966–972.

https://doi.org/10.7326/0003-4819-127-11-199712010-00003

Simon, H.A. (1990). Invariants of human behavior. Annual Review of Psychology, 41(1), 1–20. https://doi.org/10.1146/annurev.biochem.64.1.721

Simons, D.J., Boot, W. R., Charness, N., Gathercole, S.E., Chabris, C.F., Hambrick, D.Z., & Stine-Morrow, E.A.L.L. (2016). Do “Brain-Training” Programs Work? Psychological Science in the Public Interest, 17(3), 103–186. https://doi.org/10.1177/1529100616661983

Sobkow, A., Fulawka, K., Tomczak, P., Zjawiony, P., & Traczyk, J. (2019). Does mental number line training work? The effects of cognitive training on real-life mathematics, numeracy, and decision making. Journal of Experimental Psychology: Applied, 25(3), 372–385. https://doi.org/10.1037/ xap0000207

Sobkow, A., Garrido, D., & Garcia-Retamero, R. (2020). Cognitive Abilities and Financial Decision Making. In T. Zaleskiewicz & J. Traczyk (Eds.), Psychological Perspectives on Financial Decision Making, (pp. 71–87). New York: Springer.

Sobkow, A., Olszewska, A., & Traczyk, J. (2020). Multiple numeric competencies predict decision outcomes beyond fluid intelligence and cognitive reflection. Intelligence, 80, 101452. https://doi. org/10.1016/j.intell.2020.101452

Sobkow, A., Traczyk, J., Kaufman, S. B., & Nosal, C. (2018). The structure of intuitive abilities and their relationships with intelligence and Openness to Experience. Intelligence, 67, 1–10. https:// doi.org/10.1016/j.intell.2017.12.001

Strelau, J. (2014). Różnice indywidualne. Historia-determinanty-zastosowanie. Scholar.

Traczyk, J., & Fulawka, K. (2016). Numeracy moderates the influence of task-irrelevant affect on probability weighting. Cognition, 151, 37–41. https://doi.org/10.1016/j.cognition.2016.03.002

Traczyk, J., Lenda, D., Serek, J., Fulawka, K., Tomczak, P., Strizyk, K., … Sobkow, A. (2018). Does fear increase search effort in more numerate people? An experimental study investigating information acquisition in a decision from experience task. Frontiers in Psychology, 9, 1203. https:// doi.org/10.3389/FPSYG.2018.01203

Traczyk, J., Sobkow, A., Fulawka, K., Kus, J., Petrova, D.G., & Garcia-Retamero, R. (2018). Numerate decision makers don’t use more effortful strategies unless it pays: A process tracing investigation of skilled and adaptive strategy selection in risky decision making. Judgment and Decision Making, 13(4), 372–381.

Traczyk, J., Sobkow, A., Matukiewicz, A., Petrova, D. G., & Garcia-Retamero, R. (2019). The experience-based format of probability improves probability estimates: The moderating role of individual differences in numeracy. International Journal of Psychology. https://doi.org/10.1002/ ijop.12566

Tversky, A., & Kahneman, D. (1981). The Framing of Decisions and the Psychology of Choice. Science, 211(4481), 453–458.

Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323. https://doi.org/10.1007/BF00122574

Tyszka, T., & Sawicki, P. (2011). Affective and cognitive factors influencing sensitivity to probabilistic information. Risk Analysis, 31(11), 1832–1845. https://doi.org/10.1111/j.1539-6924.2011.01644.x Vlek, C. (1984). What constitutes ‘a good decision’? Acta Psychologica, 56(1–3), 5–27. https://doi. org/10.1016/0001-6918(84)90004-0

Wegier, P., & Shaffer, V.A. (2017). Aiding risk information learning through simulated experience (ARISE): Using simulated outcomes to improve understanding of conditional probabilities in prenatal Down syndrome screening. Patient Education and Counseling, 100(10), 1882–1889. https://doi.org/10.1016/j.pec.2017.04.016

Weller, J.A., Dieckmann, N.F., Tusler, M., Mertz, C.K., Burns, W.J., & Peters, E. (2013). Development and Testing of an Abbreviated Numeracy Scale: A Rasch Analysis Approach. Journal of Behavioral Decision Making, 26(2), 198–212. https://doi.org/10.1002/bdm.1751

Woller-Carter, M.M., Okan, Y., Cokely, E.T., & Garcia-Retamero, R. (2012). Communicating and Distorting Risks with Graphs: An Eye-Tracking Study. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 1723–1727. https://doi.org/10.1177/1071181312561345

Zacks, R.T., & Hasher, L. (2002). Frequency processing: A twenty-five year perspective. In P. Sedlmeier & T. Betsch (Eds.), ETC. Frequency processing and cognition, (pp. 21–36). New York: Oxford University Press.

Zaleskiewicz, T., & Traczyk, J. (2020). Emotions and Financial Decision Making. In T. Zaleskiewicz & J. Traczyk (Eds.), Psychological Perspectives on Financial Decision Making, (pp 107–133). Springer.




DOI: http://dx.doi.org/10.7206/DEC.1733-0092.139

Refbacks

  • There are currently no refbacks.


This journal provides immediate open access to its content under the Creative Commons BY 4.0 license: https://creativecommons.org/licenses/by/4.0/. Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license.