Some Thoughts on Michael Chwe’s „Jane Austen, Applied Game Theorist”

Marek M. Kamiński

Abstrakt


The article examines the decision-making components of Jane Austen’s six major novels as reconstructed in Michael Chwe’s book and his argument that Austen was a precursor of game theory. In her novels, Austen describes an abundance of strategic situations in the mating process within the British higher classes. Social constraints made mating within this world a tough game due to harsh punishments for failure, especially for women, and severe limitation on signaling interest or sympathy. Austen cleverly investigates this environment and reconstructs many aspects of strategic behavior that have their counterparts in formal concepts of game and decision theory. While she hasn’t made contributions to theory per se, she deserves being named a precursor of applied strategic thinking and an expert on a particular strategically sophisticated social environment.


Słowa kluczowe


Jane Austen, game theory, decision theory, mating

Pełny tekst / Download full text:

PDF (English)

Bibliografia


Aurelius, M. (2013). Meditations. Oxford University Press (written 161 – 180 AD). Austen, J. (1998). Persuasion. Broadview Press.

Austen, J. (2000). Emma, ed. Stephen M. Parrish. New York: Norton.

Austen, J. (2001). Sense and sensibility. Broadview Press.

Austen, J. (2003a). Mansfi eld park. Penguin.

Austen, J. (2003b). Northanger Abbey, ed. James Kinsley and John Davie. Oxford: Oxford University Press.

Austen, J. (2018). Pride and prejudice. e-artnow sro.

Borel, É. (1921). La théorie du jeu et les équations intégrales à noyau symétrique gauche. Comptes Rendus Hebdomadaires Des Séances de l’Académie Des Sciences, 73 (December), 1304–1308.

Chwe, M. S.-Y. (2014). Jane Austen, game theorist. Princeton University Press.

Cournot, A. A. (1838). Recherches sur les principes mathématiques de la théorie des richesses. Macmillan (1897 ed.).

Dimand, M.-A. and Dimand, R. W. (2002). The history of game theory, volume 1: from the beginnings to 1945. Routledge.

Kaminski, M. M. (2004). Games Prisoners Play. Princeton, N.J.: Princeton University Press.

Steinhaus, H. (1925). Defi nicje potrzebne do teorji gry i pościgu. Myśl. Akad. Lwów, 1(1), 13–14.

Von Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100, 295– 320.

Zermelo, E. (1912). Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. Proc. Int. Cong. Math., Vol. II, Cambridge, 501–504.




DOI: http://dx.doi.org/10.7206/DEC.1733-0092.114

Refbacks

  • There are currently no refbacks.